Aller au contenu

5. Des exercicesโš“๏ธŽ

5.1 ร‰locution chez le dentisteโš“๏ธŽ

Chez le dentiste, la bouche grande ouverte, lorsqu'on essaie de parler, il ne reste que les voyelles. Mรชme les ponctuations sont supprimรฉes. Vous devez รฉcrire une fonction dentiste qui prend une chaine de caractรจres texte et qui renvoie une autre chaine ne contenant que les voyelles de texte, placรฉes dans l'ordre.

Les voyelles sont donnรฉes par :

VOYELLES = ['a', 'e', 'i', 'o', 'u', 'y']
On ne considรจrera que des textes รฉcrits en minuscules, sans accents.

Exemples

dentiste("j'ai mal")
# affiche
'aia'
dentiste("il fait chaud")
# affiche
'iaiau'
dentiste("")
# affiche
''
la fonction devra passer les tests suivants:
assert dentiste("j'ai mal") == 'aia'
assert dentiste("il fait chaud") == 'iaiau'
assert dentiste("") == ''

ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

5.2 Rendu de monnaieโš“๏ธŽ

On sโ€™intรฉresse au problรจme du rendu de monnaie. On suppose quโ€™on dispose dโ€™un nombre infini de billets de 5 euros, de piรจces de 2 euros et de piรจces de 1 euro. Le but est dโ€™รฉcrire une fonction nommรฉe rendu dont le paramรจtre est un entier positif non nul somme_a_rendre et qui retourne une liste de trois entiers n1, n2 et n3 qui correspondent aux nombres de billets de 5 euros (n1) de piรจces de 2 euros (n2) et de piรจces de 1 euro (n3) ร  rendre afin que le total rendu soit รฉgal ร  somme_a_rendre.

On utilisera un algorithme glouton : on commencera par rendre le nombre maximal de billets de 5 euros, puis celui des piรจces de 2 euros et enfin celui des piรจces de 1 euros.

Exemples :

rendu(13)
# affiche
[2,1,1]
rendu(64)
# affiche
[12,2,0]
rendu(89)
#affiche
[17,2,0]

ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

5.3 Conversionโš“๏ธŽ

Pour rappel, la conversion dโ€™un nombre entier positif en binaire peut sโ€™effectuer ร  lโ€™aide des divisions successives comme illustrรฉ ici :

image

Voici une fonction Python basรฉe sur la mรฉthode des divisions successives permettant de convertir un nombre entier positif en binaire :

def binaire(a):
    bin_a = str(...)
    a = a // 2
    while a ... :
        bin_a = ...(a%2) + ...
        a = ...
    return bin_a
Complรฉter la fonction binaire.

ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

5.4 XORโš“๏ธŽ

L'opรฉrateur ยซ ou exclusif ยป entre deux bits renvoie 0 si les deux bits sont รฉgaux et 1 s'ils sont diffรฉrents :
0 โŠ• 0 = 0 , 0 โŠ• 1 = 1 , 1 โŠ• 0 = 1 , 1 โŠ• 1 = 0

On reprรฉsente ici une suite de bits par un tableau contenant des 0 et des 1.

Exemples :

a = [1, 0, 1, 0, 1, 1, 0, 1]
b = [0, 1, 1, 1, 0, 1, 0, 0]
c = [1, 1, 0, 1]
d = [0, 0, 1, 1]

ร‰crire la fonction xor qui prend en paramรจtres deux tableaux de mรชme longueur et qui renvoie un tableau oรน lโ€™รฉlรฉment situรฉ ร  position i est le rรฉsultat, par lโ€™opรฉrateur ยซ ou exclusif ยป, des รฉlรฉments ร  la position i des tableaux passรฉs en paramรจtres.

En considรฉrant les quatre exemples ci-dessus, cette fonction doit passer les tests suivants :

assert(xor(a, b) == [1, 1, 0, 1, 1, 0, 0, 1])
assert(xor(c, d) == [1, 1, 1, 0])
ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

5.5 Tri itรฉratifโš“๏ธŽ

On considรจre l'algorithme de tri de tableau suivant : ร  chaque รฉtape, on parcourt depuis le dรฉbut du tableau tous les รฉlรฉments non rangรฉs et on place en derniรจre position le plus grand รฉlรฉment.

Exemple avec le tableau : t = [41, 55, 21, 18, 12, 6, 25]

  • ร‰tape 1 : on parcourt tous les รฉlรฉments du tableau, on permute le plus grand รฉlรฉment avec le dernier.

Le tableau devient t = [41, 25, 21, 18, 12, 6, 55]

  • ร‰tape 2 : on parcourt tous les รฉlรฉments sauf le dernier, on permute le plus grand รฉlรฉment trouvรฉ avec l'avant dernier.

Le tableau devient : t = [6, 25, 21, 18, 12, 41, 55]

Et ainsi de suite. La code de la fonction tri_iteratif qui implรฉmente cet algorithme est donnรฉ ci-dessous.

def tri_iteratif(tab):
    for k in range(..., 0 ,-1):
        imax = ...
        for i in range(0, ...):
            if tab[i] > ... :
                imax = i
        if tab[imax] > ... :
            ..., tab[imax] = tab[imax], ...
    return tab
Complรฉter le code qui doit passer ce test :
assert tri_iteratif([41, 55, 21, 18, 12, 6, 25]) == [6, 12, 18, 21, 25, 41, 55]
On rappelle que l'instruction a, b = b, a รฉchange les contenus de a et b. ```

ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

5.6 Delta encodingโš“๏ธŽ

Le codage par diffรฉrence (delta encoding en anglais) permet de compresser un tableau de donnรฉes en indiquant pour chaque donnรฉe, sa diffรฉrence avec la prรฉcรฉdente (plutรดt que la donnรฉe elle-mรชme). On se retrouve alors avec un tableau de donnรฉes assez petites nรฉcessitant moins de place en mรฉmoire. Cette mรฉthode se rรฉvรจle efficace lorsque les valeurs consรฉcutives sont proches.

Programmer la fonction delta_encoding qui prend en paramรจtre un tableau non vide de nombres entiers et qui renvoie un tuple ร  deux รฉlรฉments comprenant :

  • En premier, la valeur initiale
  • En second, le tableau des diffรฉrences, contenant les valeurs entiรจres compressรฉes ร  l'aide de cette technique.

la fonction devra passer le test suivant:

assert delta_encoding([1000000, 1000042, 1000040, 1000055, 1000010]) ==  (1000000, [42, -2, 15, -45])

assert delta_encoding([42]) == (42, [])

ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”ื”
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Retour en haut de la page